ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

Miembro del Colegio Máximo de las Academias de Colombia

CARLOS ALBERTO DUQUE ECHEVERRI

 

Profesión: Físico

Área (s) de especialización: Materia Condensada

Categoría en la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Miembro Correspondiente

Fecha de posesión, Miembro Correspondiente: 11 diciembre 2014

 

Datos personales

Fecha de nacimiento: 18/10/1961

Lugar de nacimiento

Ciudad: Abejorral

Departamento/Estado/Provincia: Antioquia

País: Colombia

Dirección institucional: Calle 70, 52-21, Medellín

Teléfonos. +57-4-219 56 30

Dirección electrónica (e-mail):

carlos.duque1@udea.edu.co

cduque_echeverri@yahoo.es

Hoja de vida (Curriculum Vitae en línea):

Página (sitio) web:

http://www.udea.edu.co/wps/portal/udea/web/inicio/investigacion/grupos-investigacion/ciencias-naturales-exactas/materia-condensada

Títulos académicos:

Físico, Universidad de Antioquia, 1990

Magister en Física, Universidad de Antioquia, 1994

Doctor en Ciencias Físicas, Universidad del Valle, 1998

Áreas de investigación

Sistemas semiconductores de baja dimensionalidad

Solución numérica de ecuaciones diferenciales

Fotónica

Espintrónica

Reseña Biográfica (Extensa)

Físico, graduado en la Universidad de Antioquia, con maestría de la misma Universidad. Doctor en Ciencias Físicas de la Universidad del Valle.

Soy miembro de:

  1. Academia Colombiana de Ciencias Exactas, Físicas y Naturales-ACCEFYN
  2. Sociedad Polaca de Física
  3. Mediterranean Institute of Fundamental Physics-MIFP
  4. Red “José Roberto Leite” de Divulgación y Formación en Nanotecnología-Nanodyf

Reconocido por Colciencias en 2013 como uno de los investigadores de más alta producción en el país.

Soy coordinador, desde su creación, del grupo de Materia Condensada-UdeA de la Universidad de Antioquia.

He participado en cerca de cincuenta (50) eventos internacionales, he sido Referee de más de cuarenta (40) revistas indexadas. He participado en comisiones de evaluación de proyectos en Polonia y Rumania. He sido el organizador de varios eventos internacionales.

Tengo colaboración activa con investigadores en Colombia, Chile, México, Cuba, Turquía, Ucrania, Rumania, Vietnam y Marruecos. He tenido colaboraciones con investigadores en Alemania, Brasil, República Checa, Armenia, Irán e Iraq.

He formado estudiantes de pregrado, Maestría y Doctorado. He sido codirector de varias tesis doctorales. He orientado estancias posdoctorales para investigadores de México, Ucrania y Colombia.

Mis trabajos de investigación conducentes a títulos fueron:

  1. Pregrado en Física: Cálculos de primeros principios para estudio de magnetismo superficial en Vanadio
  2. Maestría en Física: Estudio de fonones en Titanato de Estroncio
  3. Doctorado en Ciencias Físicas: Efectos de campos eléctricos en puntos cuánticos semiconductores

Me he desempeñado en cálculos fenomenológicos de propiedades electrónicas y ópticas en pozos, hilos y puntos cuánticos semiconductores. Estudio de efectos de impurezas y complejos excitónicos, efectos de campos eléctrico y magnético y radiación láser no resonante. He hecho énfasis en trabajos con temperatura y presión hidrostática. En los últimos años he dedicado parte de mi tiempo a investigar superredes de Grafeno.

Premios y reconocimientos recibidos

Mejor estudiante por programa, Física, Universidad de Antioquia, 1988

Tesis Doctoral Laureada, Universidad del Valle, 1998

Premio a la Investigación, Universidad de Antioquia, 2012

Publicaciones (lista completa)

  1. Effects of applied electric fields on the infrared transitions between hydrogenic states in GaAs low-dimensional systems. A. Duque, A. L. Morales, A. Montes, and N. Porras-Montenegro. Phys. Rev. B 55 (16), 10721-10728 (1997).
  2. The binding energies of shallow donor impurities in GaAs quantum-well wires under applied electric fields. Montes, C. A. Duque, and N. Porras-Montenegro. J. Appl. Phys. 81 (12), 7890-7894 (1997).
  3. Effects of an applied electric field on the binding energy of shallow donor impurities in GaAs low-dimensional systems. A. Duque, A. Montes, A. L. Morales, and N. Porras-Montenegro. J. Phys: Condens. Matter 9 (27), 5977-5987 (1997).
  4. Impurity excited states in GaAs low dimensional systems under applied electric fields. A. Duque and N. Porras-Montenegro. Braz. J. Phys. 27A, 206-210 (1997).
  5. Theoretical modeling of the photoluminescence spectra associated with free-carrier to acceptor-impurity recombination in quantum-size GaAs wire crystals. A. Duque, N. Porras-Montenegro, A. Latgé, and L. E. Oliveira. J. Appl. Phys. 83 (11), 6199-6201 (1998).
  6. Electric field effects on the states of a donor impurity in rectangular cross-section vacuum/GaAs/vacuum quantum-well wires. Montes, C. A. Duque, and N. Porras-Montenegro. J. Appl. Phys. 84 (3), 1421-1425 (1998).
  7. Density of shallow-donor impurity states in rectangular cross section GaAs quantum-well wires under applied electric field. Montes, C. A. Duque, and N. Porras-Montenegro. J. Phys.: Condens. Matter 10 (24), 5351-5358 (1998).
  8. Binding energy of the ground and first few excited states of a shallow-donor impurity in rectangular-cross-sectional area GaAs quantum-well wires under applied electric field. Montes, C. A. Duque, and N. Porras-Montenegro. Phys. Stat. Sol. (b) 210 (2), 731-736 (1998).
  9. Theoretical study of the density of shallow-acceptor impurity states in quantum-size GaAs microcrystals. A. Duque, A. Montes, N. Porras-Montenegro, and L. E. Oliveira. Semicond. Sci. Technol. 14 (6), 496-500 (1999).
  10. Internal transitions of confined magnetoexcitons in GaAs-(Ga,Al)As quantum wells. A. Duque, C. L. Beltrán, A. Montes, N. Porras-Montenegro, and L. E. Oliveira. Phys. Rev. B 61 (15), 9936-9939 (2000).
  11. Density of impurity states and donor-related optical absorption spectra of GaAs-(Ga,Al)As semiconductor heterostructures. A. Duque, A. Montes, N. Porras-Montenegro, and L. E. Oliveira. J. Phys. D: Appl. Phys. 32 (24), 3111-3116 (1999).
  12. Confined magneto-excitons in GaAs-(Ga,Al)As quantum wells. L. Beltran, C. A. Duque, A. Montes, N. Porras-Montenegro, and L. E. Oliveira. Phys. Stat. Sol. (b) 220 (1), 137-140 (2000).
  13. Density of states of a donor impurity in a GaAs quantum box under the action of an applied electric field. Montes, C. A. Duque, and N. Porras-Montenegro. Phys. Stat. Sol. (b) 220 (1), 181-185 (2000).
  14. Polaron free energy in GaAs quantum wells. E. Mora-Ramos and C. A. Duque. Phys. Stat. Sol. (b) 220 (1), 159-162 (2000).
  15. Intraexcitonic energy transition in GaAs quantum wells. W. Ospina, P. Aristizabal, R. L. Restrepo, A. Montes, and C. A. Duque. Stat. Sol. (b) 220 (1), 131-135 (2000).
  16. Uniaxial stress dependence of the binding energy of shallow donor impurities in GaAs-(Ga,Al)As quantum dots. O. Oyoko, C. A. Duque, and N. Porras-Montenegro. J. Appl. Phys. 90 (2), 819-823 (2001).
  17. Shallow-donor states in semiconductor heterostructures within the fractional-dimensional space approach. E. Oliveira, C. A. Duque, N. Porras-Montenegro, and M. de Dios-Leyva. Physica B 302-303, 72-76 (2001).
  18. Binding energy and polarizability in GaAs-(Ga,Al)As quantum-well wires. A. Duque, A. Montes, and A. L. Morales. Physica B 302-303, 84-87 (2001).
  19. Magnetoexciton transitions in GaAs-Ga1-xAlxAs quantum wells. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. J. Phys.: Condens. Matter 14 (5), 1021-1033 (2002).
  20. A theoretical study of the terahertz dynamics of magnetoexcitons in GaAs-(Ga,Al)As quantum wells. E. Oliveira, C. A. Duque, and N. Porras-Montenegro. Phys. Stat. Sol. (a) 190 (3), 731-734 (2002).
  21. Simultaneous effects of hydrostatic stress and an electric field on donors in a GaAs-(Ga,Al)As quantum well. L. Morales, A. Montes, S. Y. López, and C. A. Duque. J. Phys: Condens. Matter 14 (5), 987-995 (2002).
  22. Binding energy for a shallow donor impurity in GaAs-(Ga,Al)As quantum wells under hydrostatic pressure and applied electric field. A. Montes, A. L. Morales, and C. A. Duque. Surface Review and Letters 9 (6), 1753-1756 (2002).
  23. Magnetoabsorption spectra of intraexcitonic transitions in GaAs-(Ga,Al)As semiconductor quantum wells. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. J. Appl. Phys. 92 (3), 1227-1231 (2002).
  24. Effects of hydrostatic stress on the density of impurity states and donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells. Y. López, N. Porras-Montenegro, and C. A. Duque. Phys. Stat. Sol. (c) 0 (2), 648-651 (2003).
  25. Donor-related density of states and polarizability in a GaAs-(Ga,Al)As quantum-well under hydrostatic pressure and applied electric field. L. Morales, A. Montes, S. Y. López, N. Raigoza, and C. A. Duque. Phys. Stat. Sol. (c) 0 (2), 652-656 (2003).
  26. Binding energy and density of shallow impurity states in GaAs-(Ga,Al)As quantum wells: effects of an applied hydrostatic stress. Y. López, N. Porras-Montenegro, and C. A. Duque. Semicond. Sci. Technol. 18 (7), 718-722 (2003).
  27. Magnetic-field effects on excitons trapped in quantum dots/interface defects in narrow quantum wells. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. Phys. Rev. B 68 (7), 073312 (1-4) (2003).
  28. Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1-xAs double quantum wells. Raigoza, A. L. Morales, A. Montes, N. Porras-Montenegro, and C. A. Duque. Phys. Rev. B 69 (4), 045323 (1-8) (2004).
  29. Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. Physica B 340-342, 1090-1093 (2003).
  30. Exciton mixing and internal transitions of neutral magnetoexcitons in quantum wells. A. Duque, Z. Barticevic, M. Pacheco, and L. E. Oliveira. Phys. Stat. Sol. (b) 241 (10), 2434-2439 (2004).
  31. Donor-related photoionization cross-section of GaAs-(Ga,Al)As quantum dots: hydrostatic pressure effects. D. Correa, N. Porras-Montenegro, and C. A. Duque. Phys. Stat. Sol. (b) 241 (10), 2440-2443 (2004).
  32. Symmetric and asymmetric GaAs/AlxGa1-xAs double quantum well subjected to uniaxial stress and applied electric field. L. Morales, N. Raigoza, A. Montes, N. Porras-Montenegro, and C. A. Duque. Phys. Stat. Sol. (b) 241 (14), 3224–3230 (2004).
  33. Hydrostatic pressure effects on the donor impurity-related photoionization cross-section in cylindrical-shaped GaAs-(Ga,Al)As quantum well-wires. D. Correa, O. Cepeda-Giraldo, N. Porras-Montenegro, and C. A. Duque. Phys. Stat. Sol. (b) 241 (14), 3311–3317 (2004).
  34. Theoretical study of the effect of applied stress on the binding energy of a donor impurity in GaAs quantum well dot within an infinite potential barrier. O. Oyoko, C. A. Duque, and N. Porras-Montenegro. Indian Journal of Pure and Applied Physics 42 (12), 908-911 (2004).
  35. Hydrostatic pressure effects on donor-related absorption spectra in GaAs-(Ga,Al)As quantum wells. Y. López, N. Porras-Montenegro, and C. A. Duque. Physica B 362, (1-4), 41-49 (2005).
  36. Effects of hydrostatic pressure on donor states in symmetrical GaAs-Ga7Al0.3As double quantum wells. N. Raigoza, A. L. Morales, and C. A. Duque. Physica B 363 (1-4), 262-270 (2005).
  37. Effects of hydrostatic pressure and applied electric fields on the exciton states in GaAs-(Ga,Al)As quantum wells. Raigoza, C. A. Duque, E. Reyes-Gómez, and L. E. Oliveira. Physica B 367 (1-4), 267-274 (2005).
  38. Electron-hole transitions in self-assembled InAs/GaAs quantum dots: effects of applied magnetic fields and hydrostatic pressure. A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, and L. E. Oliveira. Microelectronics Journal 36 (3-6), 231-233 (2005).
  39. Correlated electron-hole transition energies in quantum-well wires: effects of hydrostatic pressure. Raigoza, C. A. Duque, N. Porras-Montenegro, and L. E. Oliveira. Physica B 371 (1), 153-157 (2006).
  40. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots. A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, and L. E. Oliveira. J. Phys: Condens. Matter 18 (6), 1877 (2006).
  41. Hydrostatic-pressure effects on the correlated electron-hole transition energies in GaAs-Ga1-xAlxAs semiconductor quantum wells. Raigoza, C. A. Duque, E. Reyes-Gómez, and L. E. Oliveira. Phys. Stat. Sol. (b) 243 (3), 635-640 (2006).
  42. Vacancy-solute complexes and their clusters in iron. Kuriplach, O. Melikhova, C. Domain, C. S. Becquart, D. Kulikov, L. Malerba, M. Hou, A. Almazouzi, C. A. Duque, and A. L. Morales. Applied Surface Science 252 (9), 3303-3308 (2006).
  43. Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: Magnetic field and hydrostatic pressure effects. D. Correa, N. Porras-Montenegro, and C. A. Duque. Braz. J. Phys. 36 (2A), 387-390 (2006).
  44. Infinite potential barrier and hydrostatic pressure effects on impurity-related optical absorption spectra in GaAs double quantum wells. N. Raigoza, A. L. Morales, and C. A. Duque. Braz. J. Phys. 36, 350-353 (2006).
  45. Donor-related optical absorption spectra for a GaAs-Ga7Al0.3As double quantum well under hydrostatic pressure and applied electric field effects. A. L. Morales, N. Raigoza, and C. A. Duque. Braz. J. Phys. 36 (3B), 862-865 (2006).
  46. Hydrostatic pressure and electric-field effects on the shallow donor impurity states in GaAs-Ga7Al0.3As quantum-well wires. J. W. González, N. Porras-Montenegro, and C. A. Duque. Braz. J. Phys. 36 (3B), 944-947 (2006).
  47. Correlated electron-hole transitions in bulk GaAs and GaAs-(Ga,Al)As quantum wells: effects of applied electric and in-plane magnetic fields. A. Duque, L. E. Oliveira, and M. de Dios-Leyva. Braz. J. Phys. 36 (3B), 1038-1041 (2006).
  48. Electronic states in n-type GaAs delta-doped quantum wells under hydrostatic pressure. E. Mora-Ramos and C. A. Duque. Braz. J. Phys. 36 (3B), 866-868 (2006).
  49. Impurity related optical properties in rectangular-transversal section GaAs-Ga1-xAlxAs quantum-well wires: Hydrostatic pressure and electric field effects. W. González, S. Y. López, A. H. Rodríguez, N. Porras-Montenegro, and C. A. Duque. Phys. Stat Sol. (b) 244 (1), 70-75 (2007).
  50. Effect of applied hydrostatic pressure on the eh ground transition in self-assembled InAs/GaAs quantum lens. Arezky H. Rodríguez, C. A. Duque, C. Trallero-Giner, G. J. Vázquez, M. del Castillo-Mussot, and N. Porras-Montenegro. Stat Sol. (b) 244, 48-52 (2007).
  51. Effects of crossed electric and magnetic fields effects on the electronic and excitonic states in bulk GaAs and GaAs-Ga1-xAlxAs quantum wells. de Dios-Leyva, C. A. Duque, and L. E. Oliveira. Phys. Rev. B 75 (3), 035303 (2007).
  52. Acceptor and donor impurity-related optical absorption spectra in double quantum wells: electric field and hydrostatic pressure effects. A. L. Morales, N. Raigoza, and C. A. Duque. Phys. Stat Sol. (c) 4 (2), 295-297 (2007).
  53. Donor impurity-related optical absorption spectra in GaAs-Ga1-xAlxAs quantum wells: hydrostatic pressure and Γ-X conduction band mixing effects. E. Mora-Ramos, S. Y. López, C. A. Duque, and V. R. Velasco. Phys. Stat Sol. (c) 4 (2), 418-420 (2007).
  54. Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs-Ga1-xAlxAs quantum wells. Odhiambo Oyoko, N. Porras-Montenegro, S. Y. López, and C. A. Duque. Phys. Stat Sol. (c) 4 (2), 298-300 (2007).
  55. Hole subband structure in single and double p-type δ-doped diamond quantum wells. I. Rodríguez-Vargas, C. A. Duque, M. E. Mora-Ramos, and V. R. Velasco. Stat Sol. (c) 4 (2), 415-417 (2007).
  56. Excited states and spontaneous transition lifetimes of donor impurities in quantum dots. Murillo, Julio C. Arce, C. A. Duque, and N. Porras-Montenegro. Phys. Stat Sol. (c) 4 (2), 360-362 (2007).
  57. Exciton diamagnetic shifts in GaAs-Ga1-xAlxAs quantum dots and ultrathin quantum wells. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. J. Phys.: Condens. Matter 19 (21), 216224-8pp (2007).
  58. Hydrostatic pressure effects on the -X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga1-xAlxAs quantum wells. A. Duque, S. Y. López, and M. E. Mora-Ramos. Phys. Stat. Sol. (b). 244 (6), 1964-1970 (2007).
  59. Hydrostatic pressure and growth-direction magnetic-field effects on the exciton states in coupled GaAs-(Ga,Al)As quantum wells. Raigoza, E. Reyes-Gómez, C. A Duque, and L. E. Oliveira. J. Phys.: Condens. Matter 19 (25), 256202 (10 pages) (2007).
  60. Energy spectra of exciton states in disk-shaped GaAs-Ga1-xAlxAs quantum dots under growth-direction magnetic fields. Z. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. Eur. Phys. J. B 56 (4), 303-309 (2007).
  61. Calculation of direct and indirect excitons in GaAs/Ga1-xAlxAs coupled double quantum wells: The effects of in-plane magnetic fields and growth-direction electric fields. de Dios-Leyva, C. A. Duque, and L. E. Oliveira. Phys. Rev. B 76 (7), 075303 (7 pages) (2007).
  62. Positron annihilation in structural vacancies in Al-rich NiAl alloys. L. Morales, L. A. León, N. Raigoza, C. A. Duque, J. Kuriplach, and M. Hou. Phys. Stat. Sol. (c) 4 (10), 3534-3537 (2007).
  63. Energy states in GaAs delta-doped field effect transistors under hydrostatic pressure. C. Martínez-Orozco, I. Rodríguez-Vargas, M. E. Mora-Ramos, and C. A. Duque. Microelectronics Journal 39 (3-4), 648-650 (2008).
  64. Magnetoexciton states and diamagnetic shifts in GaAs-Ga1-xAlxAs quantum dots/ultrathin quantum wells under growth-direction magnetic fields. Z. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. Microelectronics Journal 39 (3-4), 348-350 (2008).
  65. Exciton diamagnetic shift in GaAs/Ga1-xAlxAs quantum wells under in-plane magnetic fields. C. A. Duque, M. de Dios-Leyva, and L. E. Oliveira. Microelectronics Journal 39 (3-4), 407-410 (2008).
  66. Effects of hydrostatic pressure and crossed electric and magnetic fields on shallow-donor states in GaAs/Ga1-xAlxAs quantum wells. E. Tangarife, S. Y. López, M. de Dios-Leyva, L. E. Oliveira, and C. A. Duque. Microelectronics Journal 39 (3-4), 431-434 (2008).
  67. Influence of the hydrostatic pressure onto the electronic and transport properties of n-type double δ-doped GaAs quantum wells. I. Rodríguez-Vargas, M. E. Mora-Ramos, and C. A. Duque. Microelectronics Journal 39 (3-4), 438-441 (2008).
  68. Direct and indirect exciton states in GaAs-(Ga,Al)As double quantum wells under crossed electric and magnetic fields. L. E. Oliveira, M. de Dios-Leyva, and C. A. Duque. Microelectronics Journal 39 (3-4), 398-401 (2008).
  69. A variational method for the description of the pressure-induced -X mixing in GaAs-based quantum wells. E. Mora-Ramos, S. Y. López, and C. A. Duque. Physica E 40 (5), 1212-1213 (2008).
  70. Tilted electric-field and hydrostatic pressure effects on donor impurity states in cylindrical GaAs quantum disks. Y. López, N. Porras-Montenegro, E. Tangarife, and C. A. Duque. Physica E 40 (5), 1383-1385 (2008).
  71. Effects of growth-direction electric and magnetic fields on excitons in GaAs-Ga1-xAlxAs coupled double quantum wells. L. Morales, N. Raigoza, C. A. Duque, and L. E. Oliveira. Phys. Rev. B 77 (11), 113309 (4 pages) (2008).
  72. Γ-X mixing in GaAs-Ga1-xAlxAs quantum wells under hydrostatic pressure. E. Mora-Ramos, S. Y. López, and C. A. Duque. Eur. Phys. J. B 62 (3), 257-261 (2008).
  73. Effects of hydrostatic pressure on the electron g|| factor and g factor anisotropy in GaAs-(Ga,Al)As quantum wells under magnetic fields. Porras-Montenegro, C. A. Duque, E. Reyes-Gómez, and L. E. Oliveira. J. Phys.: Condens. Matter 20, 465220 (2008).
  74. Hydrostatic pressure effects on the binding and transition energies for Wannier excitons in GaAs/Ga1-xAlxAs quantum wells. P. Aristizábal, R. L. Restrepo, W. Ospina, and C. A. Duque. Microelectronics Journal 39, 1261-1263 (2008).
  75. Effects of hydrostatic pressure on the Coulomb-bound states in GaAs-Ga1-xAlxAs se miconductor superlattices. Vargas, N. Raigoza, A. L. Morales, C. A. Duque, and E. Reyes-Gómez. Superlatt. Microstruct. 44 (6), 809-813 (2008).
  76. A 2D honeycomb photonic crystal under applied magnetic fields. A. Duque, N. Porras-Montenegro, S. B Cavalcanti, L. E. Oliveira. SPIE Proceedings 7138, 19 (1-6) (2008).
  77. Photonic band structure evolution of a honeycomb lattice in the presence of an external magnetic field. A. Duque, N. Porras-Montenegro, S. B Cavalcanti, and L. E. Oliveira. J. Appl. Phys. 105, 034303 (1-5) (2009).
  78. Effects of hydrostatic pressure on the conduction-electron g-factor in GaAs-Ga1-xAlxAs quantum wells. Porras-Montenegro, N. Raigoza, E. Reyes-Gómez, C. A. Duque, and L. E. Oliveira. Phys. Stat Sol. (b) 246 (3), 648-651 (2009).
  79. Hydrostatic pressure, electric and magnetic field effects on shallow donor impurity states and photoionization cross section in cylindrical GaAs-Ga1-xAlxAs quantum dots. M. G. Barseghyan, A. A. Kirakosyan, and C. A. Duque. Stat Sol. (b) 246 (3), 626-629 (2009).
  80. Study of the electronic properties of GaAs-based atomic layer doped field effect transistor (ALD-FET) under the influence of hydrostatic pressure. C. Martínez-Orozco, I. Rodríguez-Vargas, C. A. Duque, M. E. Mora-Ramos, L. M. Gaggero-Sager. Phys. Stat Sol. (b) 246 (3), 581-585 (2009).
  81. Excitons in coupled quantum dots: hydrostatic pressure and electric field effects. Y. López, N. Porras-Montenegro, and C. A. Duque. Phys. Stat Sol. (b) 246 (3), 630-634 (2009).
  82. Optical transitions in self-assembled InAs/GaAs quantum lens under high hydrostatic pressure. Arezky H. Rodríguez, C. Trallero-Giner, C. A. Duque, and G. J. Vázquez. Appl. Phys. 105, 044308 (pags. 1-6) (2009).
  83. Impurity-related polarizability and photoionization-cross section in GaAs-Ga1-xAlxAs double quantum wells under electric fields and hydrostatic pressure. L. Morales, N. Raigoza, E. Reyes-Gómez, J. M. Osorio-Guillén, and C. A. Duque. Superlatt. Microstruct. 45, 590-597 (2009).
  84. Calculation of direct and indirect excitons in GaAs-Ga1-xAlxAs coupled double quantum wells: electric and magnetic fields and hydrostatic pressure effects. Y. López, M. E. Mora-Ramos, and C. A. Duque. Solid State Sciences 12, 210–221 (2010).
  85. Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects. M. G. Barseghyan, A. A. Kirakosyan, and C. A. Duque. Phys. J. B 72, 521-529 (2009).
  86. A theoretical study of exciton energy levels in laterally coupled quantum dots. Z. Barticevic, M. Pacheco, C. A. Duque, and L. E. Oliveira. J. Phys.: Condens. Matter 21, 405801 (8pp) (2009).
  87. Donor impurity in vertically-coupled quantum-dots under hydrostatic pressure and applied electric field. C. M. Duque, M. G. Barseghyan, and C. A. Duque. Eur. Phys. J. B 73, 309–319 (2010).
  88. Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well. Alireza Hakimyfard, M. G. Barseghyan, C. A. Duque, and A. A. Kirakosyan. Physica B 404, 5159-5162 (2009).
  89. Photoluminescence energy transitions in GaAs-Ga1-xAlxAs double quantum wells: Electric and magnetic fields and hydrostatic pressure effects. Y. López, M. E. Mora-Ramos, and C. A. Duque. Physica B 404, 5181-5184 (2009).
  90. Hydrogenic impurity binding energy in vertically coupled Ga1-xAlxAs quantum-dots under hydrostatic pressure and applied electric field. C. M. Duque, M. G. Barseghyan, and C. A. Duque. Physica B 404, 5177-5180 (2009).
  91. Hydrogenic donor impurity in parallel-triangular quantum wires: Hydrostatic pressure and applied electric field effects. L. Restrepo, E. Giraldo, G. L. Miranda, W. Ospina, and C. A. Duque. Physica B 404, 5163-5166 (2009).
  92. Hydrostatic-pressure-induced Γ-X mixing in delta-doped AlxGa1-x M. E. Mora-Ramos and C. A. Duque. J. Phys.: Conference Series 167, 012930 (pp. 5) (2009).
  93. Simultaneous effects of hydrostatic pressure and temperature on donor binding energy and photoionization cross section in Pöschl-Teller quantum well. M. G. Barseghyan, Alireza Hakimyfard, S. Y. López, C. A. Duque, and A. A. Kirakosyan. Physica E 42, 1618-1622 (2010).
  94. Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice. Porras-Montenegro and C. A. Duque. Physica E 42, 1865-1869 (2010).
  95. Electronic states in double quantum well-wires with potential W-profile: Combined effects of hydrostatic pressure and electric field. L. Restrepo, G. L. Miranda, and C. A. Duque. J. Mater. Sci. 45, 5045–5053 (2010).
  96. Shallow-donor impurity in coupled GaAs/Ga1-xAlxAs quantum well wires: hydrostatic pressure and applied electric field effects. E. Tangarife and C. A. Duque. Phys. Stat. Sol. (b) 247 (7), 1778-1785 (2010).
  97. Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires. Tangarife and C. A. Duque. Appl. Surf. Sci. 256, 7234-7241 (2010).
  98. Donor impurity states in coupled quantum well wires under hydrostatic pressure and applied electric field. Tangarife, M. E. Mora-Ramos, and C. A. Duque. Superlatt. Microstruct. 49, 275-278 (2011).
  99. Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field. C. A. Duque, E. Kasapoglu, S. Sakiroglu, H. Sari, and I. Sökmen. Applied Surface Science 256, 7406-7413 (2010).
  100. Hydrostatic pressure and electric field effects and nonlinear optical rectification of confined excitons in spherical quantum dots. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Superlatt. Microstruct. 49, 264-268 (2011).
  101. Excitons in cylindrical GaAs Pöschl-Teller quantum dots: hydrostatic pressure and temperature effects. E. Mora-Ramos, M. G. Barseghyan, and C. A. Duque. Physica E 43 (1) 338-344 (2010).
  102. Combined effects of electric field and hydrostatic pressure on electron states in asymmetric GaAs/(Ga,Al) triple quantum dots. Guillermo L. Miranda, R. L. Restrepo, and C. A. Duque. Superlatt. Microstruct. 49, 269-274 (2011).
  103. Optical properties of hybrid periodic/quasiregular dielectric multilayers. Escorcia-García, C. A. Duque, and M. E. Mora-Ramos. Superlatt. Microstruct. 49, 203-208 (2011).
  104. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field. C. A. Duque, E. Kasapoglu, S. Şakiroglu, H. Sari, and I. Sökmen. Applied Surface Science 257, 2313-2319 (2011).
  105. Hydrostatic pressure, temperature and electric field effects on donor binding energy in Pöschl-Teller quantum well. M. G. Barseghyan, Alireza Hakimyfard, S. Y. López, C. A. Duque, and A. A. Kirakosyan. Physica E. 43 (1) 529-533 (2010).
  106. Excitons in a cylindrical GaAs Pöschl-Teller quantum dot. E. Mora-Ramos, M. G. Barseghyan, and C. A. Duque. Phys. Stat. Sol. (b) 248 (6), 1412–1419 (2011).
  107. Effects of hydrostatic pressure and electric field on the nonlinear optical rectification of strongly confined electron-hole pairs in GaAs quantum dots. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Physica E 43, 1002-1006 (2011).
  108. Simultaneous effects of hydrostatic pressure and electric field on impurity binding energy and polarizability in coupled InAs/GaAs quantum wires. Tangarife and C. A. Duque. Physica B 406, 952-956 (2011).
  109. Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga1-xAlxAs multiple quantum wells. L. Restrepo, Guillermo L. Miranda, C. A. Duque, and M. E. Mora-Ramos. J. Luminescence 131, 1016–1021 (2011).
  110. Binding energy and photoionization cross section of hydrogen-like donor impurity in cylindrical InAs Pöschl-Teller quantum layer in magnetic field. G. Barseghyan, Alireza Hakimyfard, Marwan Zuhair, C. A. Duque, A. A. Kirakosyan. SPIE Proceedings Vol. 7998 79981G, 1-7 (2011).
  111. The effects of the intense laser field on bound states in single quantum well. F. Ungan, E. Kasapoglu, C. A. Duque, U. Yesilgul, S. Şakiroglu, and I. Sökmen. Phys. J. B. 80, 89–93 (2011).
  112. Simultaneous effects of electron-hole correlation, hydrostatic pressure, and temperature on the third harmonic generation in parabolic quantum dots. M. Duque, M. E. Mora-Ramos, and C. A. Duque. J. Nanopart. Res. 13, 6103–6112 (2011).
  113. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure. I. Karabulut, M. E. Mora-Ramos, and C. A. Duque. Luminescence 131, 1502–1509 (2011).
  114. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs double quantum wells under applied electric and magnetic fields. Karabulut and C. A. Duque. Physica E 43, 1405-1410 (2011).
  115. The effects of the intense laser field on donor impurities in a cylindrical quantum dot under the electric field. E. Kasapoglu, C. A. Duque, S. Şakiroglu, H. Sari, and I. Sökmen. Physica E 43, 1427-1432 (2011).
  116. Influence of electric field, hydrostatic pressure and temperature on the electronic states in a Pöschl-Teller quantum well. A. Hakimyfard, M. G. Barseghyan, C. A. Duque, and A. A. Kirakosyan. Journal of Contemporary Physics (Armenian Academy of Sciences) 45 (6), 258-261, DOI: 10.3103/S1068337210060022 (2010).
  117. Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential. A. Duque, M. E. Mora-Ramos, E. Kasapoglu, H. Sari, and I. Sökmen. European Physical Journal B 81, 441–449 (2011).
  118. Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well. Kasapoglu, C. A. Duque, H. Sari, I. Sokmen. European Physical Journal B 82, 13–17 (2011).
  119. The nonlinear optical absorption and corrections to the refractive index in a GaAs n-type delta-doped field effect transistor under hydrostatic pressure. C. Martínez-Orozco, M. E. Mora-Ramos, and C. A. Duque. Physica Status Solidi (b) 249 (1), 146–152 (2012).
  120. Electronic states in a Pöschl-Teller-like quantum well: combined effects of electric field, hydrostatic pressure, and temperature. E Mora-Ramos, C. A Duque, and M. G Barseghyan. Superlattices and Microstructures 50, 480-490 (2011).
  121. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure. C. Martínez-Orozco, M. E. Mora-Ramos, and C. A. Duque. J. Luminescence 132, 449–456 (2012).
  122. Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. A. Duque, M. E. Mora-Ramos, E. Kasapoglu, H. Sari, and I. Sökmen. Physica Status Solidi (b) 249, 118-127 (2012).
  123. Binding energy of hydrogen-like donor impurity and photoionization cross-section in InAs Pöschl-Teller quantum ring under applied magnetic field. M. G. Barseghyan, Alireza Hakimyfard, Marwan Zuhair, C. A. Duque, and A. A. Kirakosyan. Physica E 44, 419–424 (2011).
  124. Hydrostatic pressure, impurity position and electric and magnetic fields effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring. G. Barseghyan, M. E. Mora-Ramos, and C. A. Duque. Eur. Phys. J. B 84, 265–271 (2011).
  125. The effect of the intense laser field on the intersubband transitions in Ga1-xInxNyAs1-y/GaAs single quantum well. Ungan, E. Kasapoglu, C. A. Duque, H. Sari, and I. Sökmen. Physica E 44, 515–520 (2011).
  126. Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen. J. Luminescence 132, 901-913 (2012).
  127. Hydrostatic pressure and electric and magnetic field effects on the binding energy of a hydrogenic donor impurity in InAs Pöschl-Teller quantum ring. G. Barseghyan, Alireza Hakimyfard, A. A. Kirakosyan, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 51, 119-127 (2012).
  128. Nonlinear optical absorption and optical rectification in near-surface double quantum wells: Combined effects of electric, magnetic fields and hydrostatic pressure. Y. López, M. E. Mora-Ramos, and C. A. Duque. Opt. Quant. Electron. 44, 355–372 (2012).
  129. The two-dimensional square and triangular photonic lattice under the effects of magnetic field, hydrostatic pressure, and temperature. A. Duque and M. E. Mora-Ramos. Opt. Quant. Electron. 44, 375-392 (2012).
  130. Binding energy of a donor impurity in GaAs δ-doped systems under electric and magnetic fields, and hydrostatic pressure. E. Mora-Ramos, L. M Gaggero-Sager, and C. A Duque. Physica E 44, 1335–1341 (2012).
  131. Hydrostatic pressure and electric field effect on electronic states in double quantum rings. M. Baghramyan, M. G. Barseghyan, C. A. Duque, A. A. Kirakosyan. Spie Proceedings Vol. 8414 84140C, 1-10 (2012).
  132. Electronic band structure of GaAs/AlxGa1-xAs superlattice in an intense laser field. S. Sakiroglu, U. Yesilgul, F. Ungan, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen. Luminescence 132, 1584–1588 (2012).
  133. Effects of hydrostatic pressure, temperature, electric field and aluminum concentration on the electronic states in GaAs/Ga1-xAlxAs concentric double quantum rings. H. M. Baghramyan, M. G. Barseghyan, C. A. Duque, and A. A. Kirakosyan. J. Phys.: Conference Series 350, 012016 (2012).
  134. Excitons in cylindrical GaAs-Ga1-xAlxAs quantum dots under applied electric field. E. Mora-Ramos and C. A. Duque. Physica B 407, 2351–2357 (2012).
  135. Nonlinear optical rectification and the second and third harmonic generation in Pöschl-Teller quantum well under the intense laser field. Sakiroglu, F. Ungan, U. Yesilgul, M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen. Phys. Letters A 376, 1875–1880 (2012).
  136. Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: study of nonlinear optical properties. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Ann. Phys. 524, 327–337 (2012).
  137. Exciton-related energies of the 1s-like states of excitons in GaAs-Ga1-xAlxAs double quantum wells. Guillermo L. Miranda, M. E. Mora-Ramos, and C. A. Duque. J. Luminescence 132, 2525–2530 (2012).
  138. Electric field effects on excitons in cylindrical quantum dots with asymmetric axial potential. Influence on the nonlinear optical properties. Ruben E. Acosta, Alejandro Zapata, C. A. Duque, and M. E. Mora-Ramos. Physica E 44, 1936–1944 (2012).
  139. Study of direct and indirect exciton states in GaAs-Ga1-xAlxAs quantum dots under the effects of intense laser field and applied electric field. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen. Eur. Phys. J. B 85, 312 (10 pp) (2012).
  140. Linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration. M. Baghramyan, M. G. Barseghyan, A. A. Kirakosyan, R. L. Restrepo, C. A. Duque. Journal of Luminescence 134, 594–599 (2013).
  141. Tilted electric field effects on the electronic states in a GaAs quantum disk. C. M. Duque, R. L. Restrepo, and C. A. Duque. Superlattices and Miscrostructures 52, 1078–1082 (2012).
  142. On-center donor impurity-related nonlinear corrections to optical absorption and refractive index in a two-dimensional quantum ring. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Optics Communications 285, 5456–5461 (2012).
  143. Pressure and temperature effects on the third-order nonlinear optical properties in GaAs quantum dots. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Physica B 407, 4773–4776 (2012).
  144. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure. M. G. Barseghyan, R. L. Restrepo, M. E. Mora-Ramos, A. A. Kirakosyan, and C. A. Duque. Nanoscale Research Letters 7, 538 (2012).
  145. Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Nanoscale Research Letters 7, 492 (2012).
  146. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field. Alejandro Zapata, Rubén E. Acosta, M. E. Mora-Ramos, and C. A. Duque. Nanoscale Research Letters 7, 508 (2012).
  147. Electron-related nonlinearities in GaAs-Ga1-xAlxAs double quantum wells under the effects of intense laser field and applied electric field. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen. Journal of Luminescence 135, 301–311 (2013).
  148. On the possibility of tuning the energy separation between space-quantized levels in a quantum well. V. Tulupenko, C. A. Duque, R. Demedyuk, Ya. Belichenko, C. M. Duque, V. Akimov, V. Poroshin, and O. Fomina. Philosophical Magazine Letters 93, 42–49 (2013).
  149. Properties of second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring. M. Duque, M. E. Mora-Ramos, and C. A. Duque. J. Luminescence 138, 53–60 (2013).
  150. Exciton-related nonlinear optical absorption and refraction index change in GaAs-Ga1-xAlxAs double quantum wells. Guillermo L. Miranda, Miguel E. Mora-Ramos, and Carlos A. Duque. Physica B 409, 78–82 (2013).
  151. Binding energy of hydrogenic donor impurity in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, temperature, and aluminum concentration. M. Baghramyan, M. G. Barseghyan, C. A. Duque, and A. A. Kirakosyan. Physica E 48, 164–170 (2013).
  • Effects of hydrostatic pressure on the nonlinear optical properties of a donor impurity in a GaAs quantum ring. L. Restrepo, M. G. Barseghyan, M. E. Mora-Ramos, and C. A. Duque. Physica E 51, 48–54 (2013).
  1. Electron states and related optical responses in asymmetric inverse parabolic quantum wells. C. A. Duque and M. E. Mora-Ramos. Superlattices and Microstructures 54, 61-70 (2013).
  2. Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. M. Duque, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque. Journal of Luminescence 143, 81–88 (2013).
  3. The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1-xInxNyAs1-y/GaAs quantum well. Unal Yesilgul, Fatih Ungan, Serpil Sakiroglu, Carlos Duque, Miguel Mora-Ramos, Esin Kasapoglu, Huseyin Sari, and Ismail Sökmen. Nanoscale Research Letters 7, 586 (2012).
  4. Nonlinear optical rectification associated to exciton states in asymmetric coupled double quantum wells. Guillermo L. Miranda, M. E. Mora-Ramos, and C. A. Duque. Physica E 50, 108-115 (2013).
  5. Exciton states in GaAs δ-doped systems under magnetic fields and hydrostatic pressure. E. Mora-Ramos and C. A. Duque. Physica B 415, 72–76 (2013).
  6. Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section. C. A. Duque, M. E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S Sakiroglu, H. Sari, and I. Sokmen. Luminescence 143, 304–313 (2013).
  7. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential. G. Rojas-Briseño, J. C. Martínez-Orozco, I. Rodríguez-Vargas, M. E. Mora-Ramos, and C. A. Duque. Physica B 424, 13–19 (2013).
  8. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1-xAlxAs concentric double quantum rings: effects of geometry, hydrostatic pressure, and aluminum concentration. M. Baghramyan, M. G. Barseghyan, A. A. Kirakosyan, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. J. Luminescence 145, 676–683 (2014).
  9. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field. Yesilgul, F. Ungan, S. Sakiroglu, M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sökmen. J. Luminescence 145, 379-386 (2014).
  10. Nonlinear Optical Rectification and Second Harmonic Generation in 2D-Quantum Rings under Electric and Magnetic Fields. L. Morales, M. E. Mora-Ramos, and C. A. Duque. Acta Physica Polonica A 125, 195-197 (2014).
  11. Impurity-Related Nonlinear Optical Absorption in Delta-Doped Quantum Rings. L. Restrepo, J. C. Martínez-Orozco, M. G. Barseghyan, M. E. Mora-Ramos, and C. A. Duque. Acta Physica Polonica A 125, 245-247 (2014).
  12. Intense laser field effects on the shallow-donor impurity states in rectangular-shaped quantum well wires. A. Duque, M. E. Mora-Ramos, U. Yesilgul, F. Ungan, S Sakiroglu, E. Kasapoglu, H. Sari, and I. Sökmen. Acta Physica Polonica A 125, 198-201 (2014).
  13. Optical responses in asymmetric inverse parabolic quantum wells: effects of laser fieldS and hydrostatic pressure. E. Mora-Ramos, A. L. Morales, and C. A. Duque. Acta Physica Polonica A 125, 202-204 (2014).
  14. molecular complex in ring-like nanostructures: hydrostatic pressure and electro-magnetic field effects. R. Fulla, J. H. Marín, W. Gutiérrez, C. A. Duque, and M. E. Mora-Ramos. Acta Physica Polonica A 125, 241-244 (2014).
  15. Double-donor energy structure in concentric quantum rings under magnetic field and hydrostatic pressure. R. Fulla, J. H. Marín, D. Londoño, C. A. Duque, and M. E. Mora-Ramos. Acta Physica Polonica A 125, 220-223 (2014).
  16. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: effects of an applied electric field. A. Rodríguez-Magdaleno, J. C. Martínez-Orozco, I. Rodríguez-Vargas, M. E. Mora-Ramos and C. A. Duque. J. Luminescence 147, 77–84 (2014).
  17. Nonlinear optical properties in an asymmetric double δ-doped quantum well with a Schottky barrier: Electric field effects. G. Rojas-Briseño, J. C. Martínez-Orozco, I. Rodríguez-Vargas, M. E. Mora-Ramos, and C. A. Duque. Phys. Status Solidi B 251, 415-422 (2014).
  18. Impurity binding energy for delta-doped quantum well structures. V. Tulupenko, C. A. Duque, R. Demedyuk, O. Fomina, V. Akimov, V. Belykh, and V. Poroshin. Mater. Sci. 37, 1-5 (2014).
  19. Simultaneous effects of hydrostatic pressure and temperature on the nonlinear optical properties in a parabolic quantum well under the intense laser field. F. Ungan, U. Yesilgul, S. Sakiroglu, M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, and I. Sokmen. Optics Communications 309, 158–162 (2013).
  20. Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes: Magnetic field and hydrostatic pressure. R-Fulla, J. H. Marín, W. Gutiérrez, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 67, 207–220 (2014).
  21. Optical absorption and refractive index changes in a semiconductor quantum ring: Electric field and donor impurity effects. Rubén E. Acosta, A. L. Morales, C. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Status Solidi B 253, 744–754 (2016).
  22. Intense laser field effects on the linear and nonlinear optical properties in a semiconductor quantum wire with triangle cross section. G. Barseghyan, C. A. Duque, E. C. Niculescu, and A. Radu. Superlattices and Microstructures 66, 10–22 (2014).
  23. Linear and nonlinear optical properties in a double inverse parabolic quantum well under applied electric and magnetic fields. Ungan, M. E. Mora-Ramos, C. A. Duque, E. Kasapoglu, H. Sari, I. Sökmen. Superlattices and Microstructures 66, 129–135 (2014).
  24. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field. Ungan, R. L. Restrepo, M. E. Mora-Ramos, A. L. Morales, and C. A. Duque. Physica B 434, 26-31 (2014).
  25. Impurity-related nonlinear optical properties in delta-doped quantum rings: electric field effects. L. Restrepo, A. L. Morales, J. C. Martínez-Orozco, H. M. Baghramyan, M. G. Barseghyan, M. E. Mora-Ramos, and C. A. Duque. Physica B 453, 140-145 (2014).
  26. Effects of applied lateral electric field and hydrostatic pressure on the intraband optical transitions in a GaAs/Ga1-xAlxAs quantum ring. Kh. Manaselyan, M. G. Barseghyan, A. A. Kirakosyan, D. Laroze, and C. A. Duque. Physica E 60, 95–99 (2014).
  27. Exciton-related nonlinear optical response and photoluminescence in dilute nitrogen InxGa1-xNyAs1-y/GaAs cylindrically shaped quantum dots. M. Duque, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque. J. Luminescence 154, 559–568 (2014).
  28. Electron-related optical responses in triangular quantum dots. A. Tiutiunnyk, V. Tulupenko, M. E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, and C. A. Duque. Physica E 60, 127–132 (2014).
  29. Shot noise and thermopower in aromatic molecules. H. Ojeda, C. A. Duque, and D. Laroze. Physica E 62, 15–20 (2014).
  30. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields. Correa, M. E. Mora-Ramos, and C. A. Duque. J. Appl. Phys. 115, 213105 (2014).
  • The effects of the electric and magnetic fields on the nonlinear optical properties in the step-like asymmetric quantum well. E. Kasapoglu, F. Ungan, C. A. Duque, U. Yesilgul, M. E. Mora-Ramos, H. Sari, I. Sökmend. Physica E 61, 107–110 (2014).
  1. Donor-impurity related photoionization cross section in GaAs/Ga1-xAlxAs concentric double quantum rings: effects of geometry and hydrostatic pressure. H. M. Baghramyan, M. G. Barseghyan, A. A. Kirakosyan, D. Laroze, and C. A. Duque. Physica B 449, 193–198 (2014).
  2. Electromagnetic energy transport in finite photonic structures. de Dios-Leyva, C. A. Duque, and J. C. Drake-Pérez. Optics Express 22, 12760–12772 (2014).
  • States of on-axis two-hydrogenic-impurity complex in concentric double quantum rings. Marlon R. Fulla, Jairo H. Marín, Yoder A Suaza, C. A. Duque, and M. E. Mora-Ramos. Physics Letters A 378, 2297–2302 (2014).
  1. Donor impurity states and related optical responses in triangular quantum dots under applied electric field. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 73, 171–184 (2014).
  2. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots. C. Martínez-Orozco, M. E. Mora-Ramos, and C. A. Duque. Physica B 452, 82–91 (2014).
  3. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well. L. Restrepo, F. Ungan, E. Kasapoglu, M. E. Mora-Ramos, A. L. Morales, C. A. Duque. Physica B 457, 165-171 (2015).
  4. Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well. E. Kasapoglu, A. Duque, M. E. Mora-Ramos, R. L. Restrepo, F. Ungan, U. Yesilgul, H. Sari, and I. Sokmen. Materials Chemistry and Physics 154, 170-175 (2015).
  5. Solving Schrödinger Equation by Meshless Methods. Montegranario, M. A. Londoño, J. D. Giraldo-Gómez, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Revista Mexicana de Física E 62, 96-107 (2016).
  6. Effects of hydrostatic pressure and electric field on the electron-related optical properties in GaAs multiple quantum well. A. Ospina, M. E. Mora-Ramos, and C. A. Duque. Journal of Nanoscience and Nanotechnology 17, 1247-1254 (2017).
  7. Donor impurity states in semiconductor zincblende nitride quantum systems as a source of nonlinear optical response. D. Correa, M. E. Mora-Ramos, and C. A. Duque. Journal of Nanoscience and Nanotechnology 17, 1517-1524 (2017).
  8. Exciton related optical properties in Zinc-Blende GaN/InGaN quantum wells under hydrostatic pressure. M. Duque, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque. Physica Status Solidi B 252, 670–677 (2015).
  9. Interband emission energy in a dilute nitride quaternary semiconductor quantum dot for longer wavelength applications. P. Uma Mageshwar, A. John Peter, Chang Woo Lee, and C. A. Duque. Physica E 81, 102–107 (2016).
  10. On some new effects in delta-doped QWs. V. Tulupenko, C. A. Duque, R. Demediuk, V. Belykh, A. Tiutiunnyk, A. L. Morales, V. Akimov, R. L. Restrepo, M. E. Mora-Ramos, V. Poroshin, and O. Fomina. Physica E 66, 162–169 (2015).
  11. Non-linear optical processes involving excited subbands in laser-dressed quantum wires with triangular cross-section. Radu and C. A. Duque. Physica E 72, 165-177 (2015).
  12. High-pressure effects on the intersubband optical absorption coefficient and relative refractive index change in an asymmetric double δ-doped GaAs quantum well. A. Rodríguez-Magdaleno, J. C. Martínez-Orozco, I. Rodríguez-Vargas, M. E. Mora-Ramos, and C. A. Duque. Phys. Status Solidi B 252, 683–688 (2015).
  13. Electron-related optical properties in T-shaped AlxGa1−xAs/GaAs quantum wires and dots. C. Martínez-Orozco, M. E. Mora-Ramos, and C. A. Duque. Eur. Phys. J. B 88, 115-123 (2015).
  14. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1-xAlxAs/GaAs quantum dot under applied electric field. Kasapoglu, C. A. Duque, M. E. Mora-Ramos, and I. Sökmen. Physica B 474, 15–20 (2015).
  15. Nonlinear optical rectification and second-harmonic generation in a semi-parabolic quantum well under intense laser field: Effects of electric and magnetic fields. Ungan, J. C. Martínez-Orozco, R. L. Restrepo, M. E. Mora-Ramos, E. Kasapoglu, and C. A. Duque. Superlattices and microstructures 81, 26-33 (2015).
  16. Shallow-impurity-related binding energy and linear optical absorption in ring-shaped quantum dots and quantum-well wires under applied electric field. S. A. A Kohl, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Status Solidi B 252, 786–794 (2015).
  17. Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: Exciton and impurity states. A. Tiutiunnyk, V. Akimov, V. Tulupenko, M. E. Mora-Ramos, E. Kasapoglu, F. Ungan, I. Sokmen, A. L. Morales, and C. A. Duque. Physica B 484, 95–108 (2016).
  18. Donor impurity related second and third harmonic generation and optical absorption in GaAs-(Ga,Al)As 3D coupled quantum dot-rings under applied electric field. A. Duque, M. E. Mora-Ramos, and J. D. Correa. Superlattices and Microstructures 87, 25-31 (2015).
  19. Electron-related Raman scattering in dilute nitride GaAs/InxGa1-xNyAs1-y cylindrically shaped quantum dots. M. Duque, A. L. Morales, C. A. Duque, and M. E. Mora-Ramos. Superlattices and Microstructures 87, 83-88 (2015).
  20. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials. A. Gómez-Urrea, C. A. Duque, and M. E. Mora-Ramos. Superlattices and Microstructures 87, 115-119 (2015).
  21. Study of electron-related intersubband optical properties in three coupled quantum wells wires with triangular transversal section. A. Tiutiunnyk, V. Tulupenko, V. Akimov, R. Demedyuk, A. L. Morales, M. E. Mora-Ramos, A. Radu, and C. A. Duque. Superlattices and Microstructures 87, 131-136 (2015).
  22. Optical properties of a multibarrier structure under intense laser fields. A. Ospina, M. E. Mora-Ramos, V. Akimov, A. L. Morales, V. Tulupenko, and C. A. Duque. Superlattices and Microstructures 87, 109-114 (2015).
  23. Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well. C. A. Duque, V. Akimov, R. Demediuk, V. Belykh, A. Tiutiunnyk, A. L. Morales, R. L. Restrepo, O. Fomina, and V. Tulupenko. Superlattices and Microstructures 87, 125-130 (2015).
  24. Electronic and Thermal Properties of Biphenyl Molecules. F. G. Medina, J. H. Ojeda, C. A. Duque, and D. Laroze. Superlattices and Microstructures 87, 89-96 (2015).
  25. The polaritonic spectrum of two-dimensional photonic crystals based on uniaxial polar materials. A Gómez-Urrea, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 87, 58-63 (2015).
  26. About possible THz modulator on the base of delta-doped QWs. C. A. Duque, V. Akimov, R. Demediuk, V. Belykh, A. Tiutiunnyk, A. L. Morales, R. L. Restrepo, O. Nalivayko, O. Fomina, and V. Tulupenko. Superlattices and Microstructures 87, 5-11 (2015).
  27. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center. H. Hoyos, J. D. Correa, M. E. Mora-Ramos, C. A. Duque. Physica B 484, 73-82 (2016).
  28. A meshless scheme for the calculation of electron and hole states in laterally coupled GaAs-Ga1-xAlxAs quantum dots under applied electric field. A. Londoño, J. H. Rua, J. D. Giraldo-Gómez, H. Montegranario, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 87, 77-82 (2015).
  29. The formation of indirect excitons in atomic layer doped systems. M. E. Mora-Ramos and C. A. Duque. Superlattices and Microstructures 87, 32-37 (2015).
  30. Intense laser field effects on a Woods-Saxon potential quantum well. L. Restrepo, A. L. Morales, V. Akimov, V. Tulupenko, E. Kasapoglu, F. Ungan, C. A. Duque. Superlattices and Microstructures 87, 143-148 (2015).
  31. Donor impurity states and related optical response in a lateral coupled dot-ring system under applied electric field. D. Correa, M. E. Mora-Ramos, and C. A. Duque. Physica B 472, 25-33 (2015).
  32. On intersubband absorption of radiation in delta-doped QWs. V. Tulupenko, C. A. Duque, V. Akimov, R. Demediuk, V. Belykh, A. Tiutiunnyk, A. L. Morales, R. L. Restrepo, M. E. Mora-Ramos, and O. Fomina. Physica E 74, 400–406 (2015).
  33. Laterally coupled circular quantum dots under applied electric field. M. Duque, J. D. Correa, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque. Physica E 77, 34-43 (2016).
  34. Electron Raman scattering and Raman gain in pyramidal semiconductor quantum dots. Monsalve-Calderón, A. Gil-Corrales, A. L. Morales, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Journal of Nanoscience and Nanotechnology 17, 1140-1148 (2017).
  35. Absorption Coefficient and Relative Refractive Index Change for a double delta-doped GaAs MIGFET-Iike structure: Electric and Magnetic field effects. C. Martínez-Orozco, K. A. Rodríguez-Magdaleno, J. R. Suárez-López, C. A. Duque, and R. L. Restrepo. Superlattices and Microstructures 92, 166-173 (2016).
  36. Refraction index modulation induced with transverse electric field in double tunnel-coupled GaAs/AlGaAs quantum wells. A A Shumilov, M. Ya Vinnichenko, R. M. Balagula, L. E. Vorobjev, D. A. Firsov, M. M. Kulagina, A. P. Vasil’iev, C. A. Duque, A. Tiutiunnyk, V. Akimov, R. L. Restrepo, V. N. Tulupenko, and A. L. Ter-Martirosyan. Journal of Physics: Conference Series 643, 012076 (2015).
  37. Editorial: Papers submitted to the 16th International Conference on the Physics of Light-Matter Coupling in Nanostructures, PLMC 2015 (Medellín, Colombia). Superlattices and Microstructures 87, 1-4 (2015).
  38. Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field. A. Tiutiunnyk, V. Akimov, V. Tulupenko, M. E. Mora-Ramos, E. Kasapoglu, A. L. Morales, and C. A. Duque. Phys. J. B 89, 107 pags. (5-9) (2016).
  39. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects. C. M. Duque, Ruben E. Acosta, A. L. Morales, M. E. Mora-Ramos, R. L. Restrepo, J. H. Ojeda, E. Kasapoglu, C. A. Duque. Optical Materials 60, 148-158 (2016).
  40. Electron-phonon interaction in quantum transport through quantum dots and molecular systems. J. H. Ojeda, C. A. Duque, and D. Laroze. Physica B 502, 73–81 (2016).
  41. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields. Yesilgul, E. B. Al, J. C. Martínez-Orozco, R. L. Restrepo, M. E. Mora-Ramos, C. A. Duque, F. Ungan, and E. Kasapoglu. Optical Materials 58, 107-112 (2016).
  42. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p+-) and optical absorption between the related states in an asymmetric parabolic quantum well. Kasapoglu, S. Sakiroglu, I. Sokmen, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Optical Materials 60, 318-323 (2016).
  43. Graphene superlattice: Effect of finite size on the density of states and conductance. A. Hernández-Bertrán, C. A. Duque, and M. de Dios-Leyva. Physica Status Solidi-b 254, 1600313 (pags. 1-5) (2017).
  44. Twisted bilayer blue phosphorene: A direct band gap semiconductor. A Ospina, C. A. Duque, J. D. Correa, and Eric Suárez Morell. Superlattices and Microstructures 97, 562-568 (2016).
  45. Transport properties through an aromatic molecular wire. J. H. Ojeda, C. A. Duque, and D. Laroze. Organic Electronics 41, 369-375 (2017).
  46. Carrier states and optical response in core-shell-like semiconductor nanostructures. M. Duque, M. E. Mora-Ramos, and C. A. Duque. Philosophical Magazine 97, 368-388 (2017).
  47. Bulk-like-phonon polaritons in one-dimensional photonic superlattices. A. Gómez-Urrea, C. A. Duque, and M. E. Mora-Ramos. Photonics and Nanostructures–Fundamentals and Applications 24, 7–11 (2017).
  48. Light propagation in two-dimensional photonic crystals based on uniaxial polar materials: results on polaritonic spectrum. A. Gómez-Urrea, C. A. Duque, I. V. Pérez-Quintana, and M. E. Mora-Ramos. Appl. Phys. B 123:66 (pag. 1-8) (2017).
  49. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells. C. Martínez-Orozco, J. G. Rojas-Briseño, K. A. Rodríguez-Magdaleno, I. Rodríguez-Vargas, M. E. Mora-Ramos, R. L. Restrepo, F. Ungan, E. Kasapoglu, and C. A. Duque. Physica B 525, 30–35 (2017).
  50. Temperature shift of intraband absorption peak in tunnel-coupled QW structure. Akimov, D. A. Firsov, C. A. Duque, V. M. Tulupenko, R. M. Balagula, M. Ya. Vinnichenko, and L. E. Vorobjev. Optical Materials 66, 160-165 (2017).
  51. Intense laser field-induced nonlinear optical properties of Morse quantum well. Sakiroglu, E. Kasapoglu, R.L. Restrepo, C.A. Duque, and I. Sokmen. Physica Status Solidi-b 254, 1600457 (pags. 1-6) (2017).
  • Background impurities in Si8Ge0.2/Si/Si0.8Ge0.2 n-type δ-doped QW. V. Tulupenko, C. A. Duque, A. L. Morales, A. Tiutunnyk, R. Demediuk, T. Dmytrychenko, O. Fomina, V. Akimov, R. L. Restrepo, and M. E. Mora-Ramos. Physica Status Solidi-b 254, 1600464 (pags. 1-6) (2017).
  1. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field. A. Tiutiunnyk, M. E. Mora-Ramos, A. L. Morales, C. M. Duque, R. L. Restrepo, F. Ungan, J. C. Martínez-Orozco, E. Kasapoglu, and C. A. Duque. Optical Materials 64, 496-501 (2017).
  2. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field. Yesilgul, H. Sari, F. Ungan, J. C. Martínez-Orozco, R. L. Restrepo, M. E. Mora-Ramos, C. A. Duque, I. Sokmen. Chemical Physics 485–486, 81-87 (2017).
  3. Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots. A. Gil-Corrales, A. L. Morales, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Physica B 507, 76–83 (2017).
  4. Exploring graphene superlattices: magneto-optical properties. A. Duque, M. A. Hernández-Bertrán, A. L. Morales, and M. de Dios-Leyva. J. Appl. Phys. 121, 074301 (1-10) (2017).
  5. Donor-impurity-related optical absorption in GaAs elliptic-shaped quantum dots. A. Londoño, R. L. Restrepo, J. H. Ojeda, Huynh Vinh Phuc, M. E. Mora-Ramos, E. Kasapoglu, A. L. Morales, and C. A. Duque. Journal of Nanomaterials 2017, 5970540 (pags. 1-18) (2017).
  6. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Chuong Nguyen, Nguyen Hieu, Carlos Duque, Doan Khoa, Nguyen Hieu, Luong Tung, and Huynh Vinh Phuc, J. Appl. Phys 121, 045107 (2017).
  7. Stark-shift of impurity fundamental state in a lens shaped quantum dot. Aderras, A. Bah, E. Feddi, F. Dujardin, and C. A. Duque. Physica E 89, 119–123 (2017).
  8. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell Quantum dot. Feddi, M. EL Yadri, F. Dujardin, R. L. Restrepo, and C. A. Duque J. Appl. Phys 121, 064303 (pag. 1-8) (2017).
  9. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields. R. L. Restrepo, E. Kasapoglu, S. Sakiroglu, F. Ungan, A. L. Morales, and C. A. Duque. Infrared Physics & Technology 85, 147-153 (2017).
  10. Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M. E. Mora-Ramos, and C. A. Duque. Philosophical Magazine 97, 1445-1463 (2017).
  11. Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: a DFT study. Diego A. Ospina, Carlos A. Duque, Julián Correa, and Miguel E Mora. Computational Materials Science 135, 43–53 (2017).
  12. Linear and nonlinear magneto-optical absorption coefficients and refractive index changes in graphene. Chuong V. Nguyen, Nguyen N. Hieu, Carlos A. Duque, Nikolai A. Poklonski, Victor V. Ilyasov, Nguyen V. Hieu, Le Dinh, Quach K. Quang, Luong V. Tung, and Huynh Vinh Phuc. Optical Materials 69, 328-332 (2017).
  13. Optical transitions in strained wurtzite GaN ultrathin quantum disk under hydrostatic pressure effects. El-Yadri, N. Aghoutane, A. El Aouami, E. Feddi, F. Dujardin, R. L. Restrepo, and C. A. Duque. Current Nanoscience 13 (6), 604-609 (2017).
  14. Analysis of light propagation in quasiregular and hybrid Rudin-Shapiro one-dimensional photonic crystals with superconducting H. A. Gómez-Urrea, J. Escorcia-García, C. A. Duque, and M. E. Mora-Ramos. Photonics and Nanostructures-Fundamentals and Applications 27, 1-10 (2017).
  15. Oscillator strength and quantum-confined stark effect of excitons in a thin PbS quantum disk. Oukerroum, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, C. A. Duque, M. Sadoqi, and G. Long. International Journal of Modern Physics B 31, 1750266 (12 pages) (2017).
  16. On the electronic states in lens-shaped quantum dots. L. Aderras, E. Feddi, A. Bah, F. Dujardin, and C. A. Duque. Physica Status Solidi B 254, No. 10, 1700144 (8 pages) (2017).
  17. Polaronic effects on the off-center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots. El Haouari, E. Feddi, F. Dujardin, R. L. Restrepo, M. E. Mora-Ramos, and C. A. Duque. Superlattices and Microstructures 111, 457-465 (2017).
  18. Optical properties of the Tietz-Hua quantum well under the applied external fields. E. Kasapoglu, S. Sakiroglu, F. Ungan, U. Yesilgul, C. A. Duque, and I. Sökmen. Physica B 256, 127–131 (2017).

ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

Sede: Carrera 28 A No. 39A-63 Tel – Fax: (571) 2683290 – 5550470
Bogotá, D.C.